
RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 63, 065204~R!
Subharmonic destruction of generalized chaos synchronization
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A bifurcation of transition that destroys generalized chaos synchronization is considered. This transition
frequently occurs in regimes of subharmonic chaos entrainment where synchronization can be abruptly termi-
nated due only to an almost unnoticeable change in the shape of the driving attractor. We explore the main
cause of this sensitivity and ascertain the mechanism behind this transition.
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Chaos synchronization has emerged as an important
fundamental phenomenon with application in such dive
subjects as biological, neurological, laser, electrical, a
fluid mechanical systems@1#. Accordingly, there has bee
great progress in formalizing a theory ofidentical synchro-
nization @2# ~identical systems that exhibit identical chao
evolution!. However, there is still much ongoing work to
wards formalizing a theory for the larger, overall class cal
generalizedsynchronization~two dissimilar coupled system
that undergo different chaotic evolution!, which was concep-
tually introduced in Ref.@3#. The onset of generalized syn
chronization in directionally coupled chaotic systems cor
sponds to the formation of a continuous mapping t
transforms the trajectory on the attractor of the drive sys
into the trajectory of the response system.

Significant progress has been made in defining crite
which when satisfied, indicates that the synchronizat
mapping is differentiable and forms a normally hyperbo
manifold @4#. This differentiable generalized synchronizatio
requires a strong contraction rate in the response system
overcomes the contraction rate in the drive system,
therefore this regime is spatially segregated from the crit
states where one normally anticipates the loss of synchr
zation, e.g., the chaotic trajectories and/or the unstable p
odic orbits ~UPOs! become conditionally unstable@2,5#.
Studies of the generalized synchronization of chaos in
entire range of the synchronization zone must deal with n
differentiable continuous synchronization mappings. Th
mappings have rather complicated form and can behave
ferently depending upon the regime of synchronization.
this Rapid Communication we show that these mappings
have properties that bring about the sudden destructio
generalized chaos synchronization.

The characteristic feature of this regime of chaos synch
nization is that the synchronization tolerates signific
variations in the coupling strength and parameter value
the response system, but is susceptible to a small chang
the dynamics of a driving system. For this regime alm
unnoticeable change in the chaotic behavior of the drive s
tem is able to completely destroy the synchrony between
systems, even when all response Lyapunov exponents
negative, and all the UPOs one would find in the synchro
zation regime remain conditionally stable. Since this tran
tion is not due to bifurcations that destabilize some of
conditionally stable UPOs, it differs from the well-know
1063-651X/2001/63~6!/065204~4!/$20.00 63 0652
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blowoutandbubblingtransitions~see, for example, Ref.@5#!.
Our studies indicate that this transition frequently occurs
coupled chaotic oscillators synchronized in a chaotic reg
with different fundamental frequencies.

To be more specific, we build our discussion based up
the results of numerical simulations of the regime of cha
synchronization with frequency ratio 2:1, which was pre
ously observed in experiments with two electrical chao
circuits @6#. The dynamics of the drive circuit are describe
by the set of differential equations of the form@6#

n ẋ15x2 ,

n ẋ252x12dx21x3 , ~1!

n ẋ35g„a1f ~x1!2x3…2sx2.

The response system equations are

ẏ15y2 ,

ẏ252y12dy21y3 , ~2!

ẏ35g„a2f ~y1!2y31gx1…2sy2,

where g is the coupling strength, andg50.294, s51.52,
d50.534, anda2516.7 are fixed system parameters. T
nonlinear functionf (x) models the input-output characteri
tics of a nonlinear converter in the circuit@7#. The parameter
n in the drive system equations is the time scaling param
that is used to select the desired frequency ratio of the s
chronization.

The phenomenon discussed in this paper is illustrated
Fig. 1. The values of the parameters in the drive and
sponse systems are selected in a such way that both sys
when uncoupled, generate chaotic oscillations. The cha
attractor in the driving system, witha1515.93, is shown in
Fig. 1~a!. The attractor of the response system has a v
similar form, but because of the parametern, the phase ve-
locity of the trajectories of the driving attractor is abo
twice the size of the phase velocity in the response attra
trajectories. We set the values ofg53.0 and n50.498,
which corresponds to a point on the parameter plane (n,g),
which is about in the middle of the synchronization zo
with frequency ratio 2:1 when the response system is dri
by the trajectories of the chaotic attractor shown in Fig. 1~a!.
A Lissajous figure of this synchronous chaotic attractor
©2001 The American Physical Society04-1
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shown in Fig. 1~b!. The bold points shown against the bac
ground of the chaotic attractors correspond to the points
the Poincare´ cross section where the trajectories cross
valuex250 with positive values ofdx2 /dt.

It follows from the Lissajous figure that synchronizatio
between the drive and response systems has frequency
2:1. This synchronization regime turns out to be very rob
against variation of the parameter values in the response
tems as well as variation of the coupling strength. Synch
nization also remains stable for values ofa1 in the drive
system that are lower than the one shown in Fig. 1~a! (a1
515.93). However, this regime of synchronization abrup
terminates after a very slight increase in the value ofa1 ~less
then 0.1%). The chaotic attractors that occur after the
struction of this synchronization are shown in Figs. 1~c! and
1~d!. These figures are obtained with the same param
values as before except for the new value ofa1, now a1
515.94. Comparing with the chaotic attractors in Fig. 1, o
can see that while the small change ina1 does not cause an
noticeable change in the drive system attractorADR , the
synchronization of the response system is completely te
nated. Why is this regime of synchronization so complet
destroyed by an almost unnoticeable change inADR , when it
tolerates significant changes in both the response system
the value of the coupling parameter? To answer this ques
we analyze this minor change of the drive system and st
how it destroys the synchronization.

The distinctive feature ofADR for the domain of values o
a1 where the systems are synchronized is the existence

FIG. 1. Chaotic attractors of the drive system~left! computed
for a1515.93 ~a! anda1515.94 ~c!, along with Lissajous figures
constructed from the drive and response attractors and plotted
(x1 ,y1) @a1515.93~b! anda1515.94~d!#. In both cases, all of the
system parameter values are the same, except fora1. The trajecto-
ries’ intersections with the Poincare´ cross section (x250) are
shown as bold dots.
06520
n
e

tio
t

ys-
-

e-

er

e

i-
y

nd
n
y

f a

gap, which can be clearly seen in the return map shown
Fig. 2 as the interval betweenp and q. Due to the high
dissipation in the drive system, this return map is almos
one-dimensional~1D! map. Approximating the dynamics o
the attractor with the 1D map, one can split the map into t
intervals: L ~located on the left-hand side of the diagona!
andR ~located on the right-hand side of the diagonal!. Note
that any trajectory, including chaotic trajectories and u
stable periodic orbits~UPOs!, of ADR periodically alternates
between the intervalsL and R, changing intervals every it-
eration. We call such trajectoriesuniformly alternatingtra-
jectories.

It is clear from Fig. 2~b! that the periodic orbit of period 1
(p1), which is located between the intervalsL andR, does
not appear in the chaotic attractorADR . When the value of
a1 increases to 15.94, the pointsp andq merge together. As
the result, the orbitp1 now lies in the interior of the chaotic
attractorADR and a new set of UPOs that contain nonu
form alternation ofR and L, which have repetition of the
same symbol in the sequence ofRs andLs, are formed in the
chaotic attractor. In this case the chaotic trajectory ofADR is
no longer a uniformly alternating trajectory.

Consider the features of the synchronization mapping
maps the chaotic trajectories and the UPOs ofADR into the
trajectories of the attractor in the response system. We c
puted all of the UPOs in the drive system up to period 6 a
studied their respective response images that form limit
periodic orbits in the phase space of the response system
computed both stable and unstable images, which, res
tively, correspond to the conditionally stable and conditio
ally unstable UPOs in the drive-response system@9#. We
index these imagespN, whereN stands for the period of the
corresponding UPO in the phase space of the drive sys
The Poincare´ cross sections of the chaotic attractors, and
UPOs computed in the drive-response system are plotte
the plane (x1 ,y1) in Fig. 3.

Figure 3~a! presents the regime of synchronized oscil
tions, which is computed for the chaotic attractor shown
Figs. 1~a! and 1~b!. In this case, the stable images for all
the UPOs ofADR ~indicated by open symbols! are mapped
inside the synchronized chaotic attractor~which is plotted
with circles!. Figure 3~a! shows only the UPOs withN<6.
The unstable images for the same UPOs~they are indicated

for

FIG. 2. Return map„x1(tn21),x1(tn)…, plotted for the trajecto-
ries of the drive system chaotic attractorADR with a1515.93 ~a!
and the enlarged picture of the inset areaA ~b!. tn corresponds to
the times when the chaotic trajectory crosses the Poincare´ cross
sectionx250; see Fig. 1~a!.
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by closed symbols! are located well outside the chaotic a
tractor. WhileADR contains only uniformly alternating or
bits, this separation of the regions with stable and unsta
images is persistent. The stable image of the period-1 o
p1 ~indicated by an open circle!, is also outside the attracto
Note that although the trajectories ofADR get very close to
the period-1 orbit@see the projection ofp1 onto thex1(tn)
axis#, the coordinates of the stable image ofp1 in the re-
sponse systems are shifted a bit from the synchronized
tractor @see the projection of thep1 image onto the axis
y1(tn)]. The existence of this shift indicates that the sy
chronization mapping will experience dramatic changes o
the period-1 orbits appears in the interior ofADR as a1 in-
creases.

It is important to mention that the uniformly alternatin
UPOs map into the phase space of response system w
1:1 mapping; see Fig. 3~a!. When the systems are synchr
nized, the chaotic attractorADR contains only uniformly al-
ternating orbits, and therefore, this regime of chaos sync
nization is characterized by a 1:1 continuous mapping forall
trajectories. This fact is also confirmed using the auxilia
system method@8#. Note that, although the synchronizatio
mapping in this case is 1:1, the ratio of fundamental frequ
cies in this regime is 2:1.

Figure 3~b! presents the UPOs and chaotic attractor co
puted for the case when the synchronization is termina
due to a very small increase ina1, as is shown in Figs. 1~c!
and 1~d!. Comparing Figs. 3~a! and 3~b!, one can see tha
while the responses to the uniformly alternating UPOs~indi-
cated by diamonds! experience negligible change, the sy
chronization mapping is completely destroyed. This destr
tion of the mapping is also confirmed with the auxilia
system method. We argue that the only reason for such
abrupt destruction is the appearance of the nonuniformly
ternating UPOs insideADR . These UPOs are born in th
homoclinic structure formed by the stable and unstable m
folds of the p1 orbit. Due to the strong dissipation in ou
case, this homoclinic structure forms immediately before
pointsp andq merge together; see Fig. 2. Therefore, the fi
nonuniformly alternating UPO appears insideADR immedi-
ately before this bifurcation.

FIG. 3. The (x1 ,y1)-projections of the chaotic attractor
~circles! and the UPOs~symbols! computed on the Poincare´ cross
section in the regime of synchronization witha515.93 ~a! and
asynchronous regime witha515.94 ~b!. Open ~closed! symbols
correspond to the UPOs that have stable~unstable! response images
when the response system is driven by the UPOs of the d
system.
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We have found that all of nonuniformly alternating UPO
are mapped into the phase space of the response system
a 1:2 mapping. As a result, the stable images each of th
UPOs appear in both the region of stable and the region
unstable images for uniformly alternating UPOs; see F
3~b!. The complete set of UPOs form a skeleton of a chao
attractor, and any chaotic trajectory can be considered
trajectory that wanders among these saddle periodic or
Therefore in our case, when the chaotic trajectory of
drive system gets close to the nonuniformly alternating t
jectory, it is dragged into the region of unstable images
the uniformly alternating UPOs. This is the mechanism t
makes the chaotic trajectory appear arbitrarily close to a c
ditionally unstable UPO and forms a new chaotic attrac
that contains both conditionally stable and conditionally u
stable UPOs. The appearance of these distinct sets of U
in the chaotic attractor leads to a nonhyperbolic situation~see
Ref. @10# and references therein!, which can be detected b
the appearance of outbursts of nonidentical behavior in
response and auxiliary systems@8#, because the chaotic re
sponse trajectory computed for this nonhyperbolic set
comes extremely sensitive to an arbitrary small noise.

The emergence of the nonuniformly alternating chao
trajectories inside ofADR results in the flipping of the phas
of subharmonic components in the frequency spectrum of
chaotic driving signal. Since this fact reflects the major e
ment causing the loss of synchronization, we call this des
chronization process thesubharmonictransition.

In the example presented, the termination of the ch
synchronization is quite clear from the analysis of the attr
tors in the Poincare´ cross section~see Figs. 2 and 3!. How-
ever, this transition is not detectable with the standard an
sis based upon the Lyapunov exponents. Indeed,
spectrum of Lyapunov exponents for the drive system
~0.325, 0.000,23.541) for a1515.93 and~0.343, 0.000,
23.559) for a1515.94, while the spectra of conditiona
Lyapunov exponents are all negative values and are equ
(20.089,20.731,20.779) and (20.033,20.763,20.802),
respectively. All of the periodic orbits embedded in the ch
otic attractors of the driving system also have images t
have negative maximal conditional Lyapunov exponen
both for synchronousand asynchronous oscillation regime
Therefore, this border of chaos synchronization cannot
detected based completely on this kind of stability analy
and requires careful analysis of the mapping. We believe
this situation is quite typical for regimes of chaos synch
nization with the frequency ratios other than 1:1. It may a
be observed in systems where the chaotic attractor cont
UPOs with distinct mean frequencies.

In conclusion, we would like to emphasize that when t
considered type of transition occurs, the synchronizat
mapping for the chaotic trajectories gets destroyed, des
the fact that all of the unstable periodic orbits continue
have stable periodic images in the response system. In a
tion, the coordinates and the multipliers of these images
also remain unchanged through the transition. We beli
that this observation brings a very important massage to
search exploring the phenomenon of generalized synch

e
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zation, because many recent studies rely on the fact
stable responses to the UPOs of the driving attractor do e
to confirm the stability of the chaos synchronization~see, for
example, Ref.@11#!. Although such justification seems to b
appropriate for studies of identical synchronization@2#, it can
lead to wrong conclusions pertaining to the situation wh
one deals with generalized synchronization of chaos and
E

,

,

s.
.
.
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particular, with the case of subharmonic entrainment of c
otic oscillations.
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