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Subharmonic destruction of generalized chaos synchronization
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A bifurcation of transition that destroys generalized chaos synchronization is considered. This transition
frequently occurs in regimes of subharmonic chaos entrainment where synchronization can be abruptly termi-
nated due only to an almost unnoticeable change in the shape of the driving attractor. We explore the main
cause of this sensitivity and ascertain the mechanism behind this transition.
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Chaos synchronization has emerged as an important arldowoutandbubblingtransitions(see, for example, Relf5]).
fundamental phenomenon with application in such diverséur studies indicate that this transition frequently occurs in
subjects as biological, neurological, laser, electrical, andoupled chaotic oscillators synchronized in a chaotic regime
fluid mechanical systemgL]. Accordingly, there has been With different fundamental frequencies. _
great progress in formalizing a theory idlentical synchro- To be more specific, we build our discussion based upon

nization[2] (identical systems that exhibit identical chaotic g;icrﬁrS(;Jr!tiia(i{oguvr\r/}ter??gqsulrgﬁclstlroaqii 02f_ {he\z/v[]eigémvsagf ;rg?/(i)-s

Sv\;?gjstl?o?mgﬁgﬁvglrfgg:e flc?r tsrt1”e| Ig}ug: 832?;“%2;”2;&; usly observed in experiments with two electrical chaotic
; g a theory ° larger, circuits [6]. The dynamics of the drive circuit are described

generalizedsynchronizatior{two dissimilar coupled systems by the set of differential equations of the fofi]

that undergo different chaotic evolutiprwhich was concep-

tually introduced in Ref[3]. The onset of generalized syn- VX1=Xo,

chronization in directionally coupled chaotic systems corre-

sponds to the formation of a continuous mapping that PXy= —X1— OXo+ X, (1)
transforms the trajectory on the attractor of the drive system _

into the trajectory of the response system. vX3= y(a1f(X1) —X3)— 0 Xs.

Significant progress has been made in defining criteria )
which when satisfied, indicates that the synchronization' '€ résponse system equations are
mapping is differentiable and forms a normally hyperbolic oo
manifold[4]. This differentiable generalized synchronization Yi=¥a
requires a strong contraction rate in the response system that Vo= —Y1— 8Yo+Ya, @)
overcomes the contraction rate in the drive system, and
therefore this regime is spatlally_segregated from the cntlca_l yVa= y(asf (Y1) —Ya+ X)) — ays,
states where one normally anticipates the loss of synchroni-
zation, e.g., the chaotic trajectories and/or the unstable perwhereg is the coupling strength, angi=0.294, 0=1.52,
odic orbits (UPO9 become conditionally unstablg2,5]. 6=0.534, anda,=16.7 are fixed system parameters. The
Studies of the generalized synchronization of chaos in th@onlinear functionf(x) models the input-output characteris-
entire range of the synchronization zone must deal with nontics of a nonlinear converter in the circ(if]. The parameter
differentiable continuous synchronization mappings. These in the drive system equations is the time scaling parameter
mappings have rather complicated form and can behave dithat is used to select the desired frequency ratio of the syn-
ferently depending upon the regime of synchronization. Inchronization.
this Rapid Communication we show that these mappings can The phenomenon discussed in this paper is illustrated in
have properties that bring about the sudden destruction dfig. 1. The values of the parameters in the drive and re-
generalized chaos synchronization. sponse systems are selected in a such way that both systems,

The characteristic feature of this regime of chaos synchrowhen uncoupled, generate chaotic oscillations. The chaotic
nization is that the synchronization tolerates significantattractor in the driving system, with;=15.93, is shown in
variations in the coupling strength and parameter values dfig. 1(a). The attractor of the response system has a very
the response system, but is susceptible to a small change @&milar form, but because of the parameterthe phase ve-
the dynamics of a driving system. For this regime almostocity of the trajectories of the driving attractor is about
unnoticeable change in the chaotic behavior of the drive syswice the size of the phase velocity in the response attractor
tem is able to completely destroy the synchrony between th&rajectories. We set the values gf=3.0 and v=0.498,
systems, even when all response Lyapunov exponents avehich corresponds to a point on the parameter plang)(
negative, and all the UPOs one would find in the synchroniwhich is about in the middle of the synchronization zone
zation regime remain conditionally stable. Since this transiwith frequency ratio 2:1 when the response system is driven
tion is not due to bifurcations that destabilize some of theby the trajectories of the chaotic attractor shown in Fig).1
conditionally stable UPOs, it differs from the well-known A Lissajous figure of this synchronous chaotic attractor is
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FIG. 2. Return magx,(t,_1).X;(t,)), plotted for the trajecto-
ries of the drive system chaotic attractdpg with @;=15.93(a)
and the enlarged picture of the inset afe#h). t,, corresponds to
the times when the chaotic trajectory crosses the Poincarss
sectionx,=0; see Fig. (a).

gap, which can be clearly seen in the return map shown in
Fig. 2 as the interval betweep and g. Due to the high
dissipation in the drive system, this return map is almost a
e me i is 2 ar § 65 1 15 B one-dimensior!adlD) map. Approximating Fhe dynam@cs on
X x; the attractor with the 1D map, one can split the map into two
intervals: L (located on the left-hand side of the diaggnal
FIG. 1. Chaotic attractors of the drive systdfaft) computed andR (located on the right-hand side of the diaggnalote
for a;=15.93(a) and @;=15.94(c), along with Lissajous figures that any trajectory, including chaotic trajectories and un-
constructed from the drive and response attractors and plotted fajtable periodic orbit$UPOS, of Apg periodically alternates
(X1,¥1) [@1=15.93(b) anda;=15.94(d)]. In both cases, all of the  petween the intervalk and R, changing intervals every it-
system parameter values are the same, except folhe trajecto-  gration. We call such trajectoriesiiformly alternatingtra-
ries’ intersections with the Poincareross section X,=0) are jectories.
shown as bold dots. It is clear from Fig. 2b) that the periodic orbit of period 1
(p1), which is located between the intervdlsand R, does
shown in Fig. 1b). The bold points shown against the back- not appear in the chaotic attractdi,r. When the value of
ground of the chaotic attractors correspond to the points 0@, increases to 15.94, the poimisandq merge together. As
the Poincarecross section where the trajectories cross thehe result, the orbip1 now lies in the interior of the chaotic
valuex,=0 with positive values otix,/dt. attractor Apg and a new set of UPOs that contain nonuni-
It follows from the Lissajous figure that synchronization form alternation ofR and L, which have repetition of the
between the drive and response systems has frequency raame symbol in the sequenceRs andLs, are formed in the
2:1. This synchronization regime turns out to be very robusthaotic attractor. In this case the chaotic trajectorylgf is
against variation of the parameter values in the response sygo longer a uniformly alternating trajectory.
tems as well as variation of the coupling strength. Synchro- Consider the features of the synchronization mapping that
nization also remains stable for values ®f in the drive  maps the chaotic trajectories and the UPOsgk into the
system that are lower than the one shown in Fi@ La;  trajectories of the attractor in the response system. We com-
=15.93). However, this regime of synchronization abruptlyputed all of the UPOs in the drive system up to period 6 and
terminates after a very slight increase in the valuepfless  studied their respective response images that form limiting
then 0.1%). The chaotic attractors that occur after the deperiodic orbits in the phase space of the response system. We
struction of this synchronization are shown in Fig&)land  computed both stable and unstable images, which, respec-
1(d). These figures are obtained with the same parameteively, correspond to the conditionally stable and condition-
values as before except for the new valueagf now a;  ally unstable UPOs in the drive-response sys{&h We
=15.94. Comparing with the chaotic attractors in Fig. 1, oneindex these imagesN, whereN stands for the period of the
can see that while the small changenipndoes not cause any corresponding UPO in the phase space of the drive system.
noticeable change in the drive system attractyr, the  The Poincareross sections of the chaotic attractors, and the
synchronization of the response system is completely termiPOs computed in the drive-response system are plotted on
nated. Why is this regime of synchronization so completelythe plane %,,y,) in Fig. 3.
destroyed by an almost unnoticeable changdg, when it Figure 3a) presents the regime of synchronized oscilla-
tolerates significant changes in both the response system atidns, which is computed for the chaotic attractor shown in
the value of the coupling parameter? To answer this questioRigs. 1a) and 1b). In this case, the stable images for all of
we analyze this minor change of the drive system and studshe UPOs ofApg (indicated by open symbolsire mapped
how it destroys the synchronization. inside the synchronized chaotic attractevhich is plotted
The distinctive feature afipr for the domain of values of  with circles. Figure 3a) shows only the UPOs with<6.
a1 Where the systems are synchronized is the existence of Bhe unstable images for the same UR@®y are indicated
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We have found that all of nonuniformly alternating UPOs
are mapped into the phase space of the response system with
a 1:2 mapping. As a result, the stable images each of these
UPOs appear in both the region of stable and the region of
unstable images for uniformly alternating UPOs; see Fig.

s . st '!' " . 3(b). The complete set of UPOs form a skeleton of a chaotic
% :“M '?‘T"zﬂ.’*BSn@e%%H attractor, and any chaotic trajectory can be considered as a
* T

trajectory that wanders among these saddle periodic orbits.
Therefore in our case, when the chaotic trajectory of the
drive system gets close to the nonuniformly alternating tra-

jectory, it is dragged into the region of unstable images of
the uniformly alternating UPOs. This is the mechanism that
section in the regime of synchronization with=15.93 (a) and makes the chaotic trajectory appear arbitrarily close to a con-
asynchronous regime witly=15.94 (b). Open (closed symbols  ditionally unstable UPO and forms a new chaotic attractor
correspond to the UPOs that have stallestablé response images that contains both Conditionally stable and Conditionally un-
when the response system is driven by the UPOs of the drivétable UPOs. The appearance of these distinct sets of UPOs
system. in the chaotic attractor leads to a nonhyperbolic situatsae
Ref.[10] and references therginwhich can be detected by

FIG. 3. The ;,y;)-projections of the chaotic attractors
(circles and the UPOgsymbol$ computed on the Poincagross

by closed symbolsare located well outside the chaotic at- the appearance of outbursts of nonidentical behavior in the
tractor. While Apg contains only uniformly alternating or- PP

bits, this separation of the regions with stable and unstablEeSPonse and auxiliary systerf, because the chaotic re-
images is persistent. The stable image of the period-1 orbifPONse trajectory computed for this nonhyperbolic set be-
p1 (indicated by an open circlgis also outside the attractor. COMes extremely sensitive to an arbitrary small noise.
Note that although the trajectories g, get very close to The emergence of the nonuniformly alternating chaotic
the period-1 orbi{see the projection o1 onto thex,(t,) trajectories inside ofdp results in the flipping of the phase
axis|, the coordinates of the stable imagepf in the re- of subharmonic components in the frequency spectrum of the
sponse systems are shifted a bit from the synchronized aghaotic driving signal. Since this fact reflects the major ele-
tractor [see the projection of thel image onto the axis ment causing the loss of synchronization, we call this desyn-
y1(t)]. The existence of this shift indicates that the syn-chronization process theubharmonidransition.

chronization mapping will experience dramatic changes once In the example presented, the termination of the chaos
the period-1 orbits appears in the interior 4fg as a4 in-  synchronization is quite clear from the analysis of the attrac-
creases. tors in the Poincareross sectiorisee Figs. 2 and)3How-

It is important to mention that the uniformly alternating ever, this transition is not detectable with the standard analy-
UPOs map into the phase space of response system withsés based upon the Lyapunov exponents. Indeed, the
1:1 mapping; see Fig.(8. When the systems are synchro- spectrum of Lyapunov exponents for the drive system is
nized, the chaotic attractodpg contains only uniformly al-  (0.325, 0.000,—3.541) for @;=15.93 and(0.343, 0.000,
ternating orbits, and therefore, this regime of chaos synchro—3.559) for «;=15.94, while the spectra of conditional
nization is characterized by a 1:1 continuous mappingfor Lyapunov exponents are all negative values and are equal to
trajectories. This fact is also confirmed using the auxiliary(—0.089,-0.731-0.779) and ¢ 0.033;-0.763-0.802),
system methodi8]. Note that, although the synchronization respectively. All of the periodic orbits embedded in the cha-
mapping in this case is 1:1, the ratio of fundamental frequenetic attractors of the driving system also have images that
cies in this regime is 2:1. have negative maximal conditional Lyapunov exponents,

Figure 3b) presents the UPOs and chaotic attractor comboth for synchronouand asynchronous oscillation regimes.
puted for the case when the synchronization is terminated@herefore, this border of chaos synchronization cannot be
due to a very small increase iny, as is shown in Figs.(t) detected based completely on this kind of stability analysis
and 1d). Comparing Figs. @) and 3b), one can see that and requires careful analysis of the mapping. We believe that
while the responses to the uniformly alternating URMDdi-  this situation is quite typical for regimes of chaos synchro-
cated by diamondsexperience negligible change, the syn- nization with the frequency ratios other than 1:1. It may also
chronization mapping is completely destroyed. This destrucbe observed in systems where the chaotic attractor contains
tion of the mapping is also confirmed with the auxiliary UPOs with distinct mean frequencies.
system method. We argue that the only reason for such an In conclusion, we would like to emphasize that when the
abrupt destruction is the appearance of the nonuniformly aleonsidered type of transition occurs, the synchronization
ternating UPOs insidedpg. These UPOs are born in the mapping for the chaotic trajectories gets destroyed, despite
homaoclinic structure formed by the stable and unstable manithe fact that all of the unstable periodic orbits continue to
folds of thepl orbit. Due to the strong dissipation in our have stable periodic images in the response system. In addi-
case, this homoclinic structure forms immediately before thdion, the coordinates and the multipliers of these images can
pointsp andq merge together; see Fig. 2. Therefore, the firstalso remain unchanged through the transition. We believe
nonuniformly alternating UPO appears insidgr immedi-  that this observation brings a very important massage to re-
ately before this bifurcation. search exploring the phenomenon of generalized synchroni

065204-3



RAPID COMMUNICATIONS

N. F. RULKOV AND C. T. LEWIS PHYSICAL REVIEW E63 065204R)

zation, because many recent studies rely on the fact thagarticular, with the case of subharmonic entrainment of cha-
stable responses to the UPOs of the driving attractor do exisgtic oscillations.

to confirm the stability of the chaos synchronizatisee, for The authors are grateful to H.D.I. Abarbanel, V.S. Afrai-
example, Ref[11]). Although such justification seems to be moyich, L. Kocarev, and U. Parlitz for helpful discussions.
appropriate for studies of identical synchronizati@h it can  This work was supported in part by U.S. Department of En-
lead to wrong conclusions pertaining to the situation whereergy (Grant No. DE-FG03-95ER1451&nd the U.S. Army
one deals with generalized synchronization of chaos and, iResearch OfficéMURI Grant No. DAAG55-98-1-02609
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